Allosteric coupling of the inner activation gate to the outer pore of a potassium channel
نویسندگان
چکیده
In potassium channels, functional coupling of the inner and outer pore gates may result from energetic interactions between residues and conformational rearrangements that occur along a structural path between them. Here, we show that conservative mutations of a residue near the inner activation gate of the Shaker potassium channel (I470) modify the rate of C-type inactivation at the outer pore, pointing to this residue as part of a pathway that couples inner gate opening to changes in outer pore structure and reduction of ion flow. Because they remain equally sensitive to rises in extracellular potassium, altered inactivation rates of the mutant channels are not secondary to modified binding of potassium to the outer pore. Conservative mutations of I470 also influence the interaction of the Shaker N-terminus with the inner gate, which separately affects the outer pore.
منابع مشابه
Conformational Dynamics at the Inner Gate of KcsA during Activation
The potassium channel KcsA offers a unique opportunity to explicitly study the dynamics of the moving parts of ion channels, yet our understanding of the extent and dynamic behavior of the physiologically relevant structural changes at the inner gate in KcsA remains incomplete. Here, we use electron paramagnetic resonance, nuclear magnetic resonance, and molecular dynamics simulations to charac...
متن کاملAn Epilepsy/Dyskinesia-Associated Mutation Enhances BK Channel Activation by Potentiating Ca2+ Sensing
Ca(2+)-activated BK channels modulate neuronal activities, including spike frequency adaptation and synaptic transmission. Previous studies found that Ca(2+)-binding sites and the activation gate are spatially separated in the channel protein, but the mechanism by which Ca(2+) binding opens the gate over this distance remains unknown. By studying an Asp-to-Gly mutation (D434G) associated with h...
متن کاملThermodynamic coupling between activation and inactivation gating in potassium channels revealed by free energy molecular dynamics simulations
The amount of ionic current flowing through K(+) channels is determined by the interplay between two separate time-dependent processes: activation and inactivation gating. Activation is concerned with the stimulus-dependent opening of the main intracellular gate, whereas inactivation is a spontaneous conformational transition of the selectivity filter toward a nonconductive state occurring on a...
متن کاملEnhancement of Closed-State Inactivation by Neutralization of S4 Arginines in Domain IV of a Sodium Channel
voltage sensor of domain IV is specialized in energizing a cytoplasmic inactivation element (IFM), connecting the third and fourth homologous domains, into the inner mouth of the pore via a mechanism known as “ball and chain” fast inactivation. Further, it was shown that a neutralizing mutation at the outermost S4 arginine in domain IV, which is associated with the paramyotonia congenital disea...
متن کاملMechanism of activation gating in the full-length KcsA K+ channel.
Using a constitutively active channel mutant, we solved the structure of full-length KcsA in the open conformation at 3.9 Å. The structure reveals that the activation gate expands about 20 Å, exerting a strain on the bulge helices in the C-terminal domain and generating side windows large enough to accommodate hydrated K(+) ions. Functional and spectroscopic analysis of the gating transition pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2013